

Unit Outline (Higher Education)

Institute / School:	Institute of Innovation, Science & Sustainability				
Unit Title:	Rock Mechanics Application				
Unit ID:	ENGPG9403				
Credit Points:	15.00				
Prerequisite(s):	Nil				
Co-requisite(s):	Nil				
Exclusion(s):	(ENGIN2503)				
ASCED:	030909				
Description of the Unit:					

This unit introduces elasticity, rock mechanics and their applications in rock structure designs, rock support designs and ground control in surface and underground mines.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment.

Course Level:

Lovel of Unit in Course	AQF Level of Course					
Level of onit in course	5	6	7	8	9	10
Introductory						
Intermediate			V			
Advanced						

Learning Outcomes:

Knowledge:

- K1. Understand the principles involved in theory of elasticity
- **K2.** Interpret rockmass classification depending on its structural quality, in-situ stress field and groundwater regime
- K3. Analyse stress re-distributions due to the excavation processes

Skills:

- S1. Investigate rock stress and strain analysis in mining
- **S2.** Investigate ground control analysis, select appropriate support systems; and refine the design processes
- S3. Apply knowledge in rock mechanics for rock structure designs in surface and underground mines

Application of knowledge and skills:

- A1. Analyse rock stress in mining environment
- A2. Analyse rock/ground deformation in mining environment
- A3. Design rock structures used in mining, observing safety and economic requirements

Unit Content:

Topics may include:

- 1. Overview of Theory of Elasticity
- 2. Rock as a structure
- 3. Strength & Deformation of rock
- 4. In-situ stresses
- 5. Methods of Excavation Analysis
- 6. Stresses around excavations
- 7. Stability evaluation of rock structures
- 8. Evaluation of support requirements

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1, K2, K3, S1, S3, A1, A2, A3	Numerical and conceptual tasks	Written assignments	10-30%
K2, K3, S1, S2, S3, A1, A3	Research based design project	Written report and associated calculations/Presentation	30-50%
K1, K2, K3, S1, S2, S3, A1, A2, A3	Any or all material covered in the unit will be examinable	Final Test(s)/Presentation	30-50%

Adopted Reference Style:

IEEE ()

Refer to the library website for more information

Fed Cite - referencing tool